
NASA/CR- 1999-209722

ICASE Report No. 99-43

Dependent Types and Explicit Substitutions

C_sar Mu_oz

ICASE, Hampton, Virginia

November 1999

The NASA STI Program Off'we... in Profile

Since its founding, NASA has been dedicated

to the advancement of aeronautics and space
science. The NASA Scientific and Technical

Information (STI) Program Office plays a key

part in helping NASA maintain this

important role.

The NASA STI Program Office is operated by

Langley Research Center, the lead center tk_r
NASA's scientific and technical information.

The NASA STI Program Office provides

access to the NASA STI Database, the

largest collection of aeronautical and space

science STI in the world. The Program Office
is also NASA's institutional mechanism for

disseminating the results of its research and

development activities. These results are

published by NASA in the NASA STI Report

Series, which includes the following report

types:

TECHNICAL PUBLICATION. Reports of

completed research or a major significant

phase of research that present the results

of NASA programs and include extensive

data or theoretical analysis. Includes

compilations of significant scientific and
technical data and information deemed

to be of continuing reference value. NASA

counter-part or peer-reviewed formal

professional papers, but having less

stringent limitations on manuscript

length and extent of graphic

presentations.

TECHNICAL MEMORANDUM.

Scientific and technical findings that are

preliminary or of specialized interest,

e.g., quick release reports, working

papers, and bibliographies that contain
minimal annotation. Does not contain

extensive analysis.

CONTRACTOR REPORT. Scientific and

technical findings by NASA-sponsored

contractors and grantees.

CONFERENCE PUBLICATIONS.

Collected papers from scientific and

technical conferences, symposia,

seminars, or other meetings sponsored or

co-sponsored by NASA.

SPECIAL PUBLICATION. Scientific,

technical, or historical information from

NASA programs, pr¢_iects, and missions,

often concerned with subjects having

substantial public interest.

TECHNICAL TRANSLATION. English-

language translations of foreign scientific

and technical material pertinent to
NASA's mission.

Specialized services that help round out the

STI Program Office's diverse offerings include

creating custom thesauri, building customized

databases, organizing and publishing

research results.., even providing videos.

For more information about the NASA STI

Program Officc, you can:

Access the NASA STI Program Home

Page at http://www.sti.nasa,gov/STl-

homepage.html

• Email your question via the lnternet to

help_sti.nasa.gov

• Fax your question to the NASA Access

Help Desk at (301) 621-0134

• Phone the NASA Access Help Desk at
(301) 621-0390

Write to:

NASA Access Help Desk

NASA Center lor AeroSpace Information
7121 Standard Drivc

Hanover, MD 21076-1320

NASA/CR- 1999-209722

ICASE Report No. 99-43

Dependent Types and Explicit Substitutions

C6sar Mufioz

ICASE, Hampton, Virginia

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center

Hampton, Virginia 23681-2199

Prepared for Langley Research Cenler
under Contract NAS 1-97046

November 1999

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover. MD 21076-1320

_3()t) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

DEPENDENT TYPES AND EXPLICIT SUBSTITUTIONS

(_t_SAR MU.N()Z"

Abstract. We present a dependent-type system for a A-calculus with explicit substitutions. In this

system, recta-variables, as well as substitutions, are first-claus objects. We show that the system enjoys

properties like type uniqueness, subject reduction, soundness, confluence and weak normalization.

Key words, explicit substitutions, dependent types, lamb(ta-cah:uhls

Subject classification. Computer Science

1. Introduction. Since the An-calculus of ext)licit substitutions was introduced in [1], several other

variants of explicit sut)stitution calculi ha_'e been t)rol)osed; among others [38, 27, 20, 4, 28, 7, 24, 31, 10, 33].

By using sut)stitutions as first-class objects, and (le Bruijn indices notation for variables, the Act-calculus

allows a first-order encoding of the A-calculus. In consequ(mce, technical nuisan(:es due to higher-order

aspects of the A-calculus, for examt)le (H-onversion, can |)e mininfized or elinfinate(t in exl)lieit sul)stitution

calculi. For instance, higher-order ratification t)ro/)lems have been reformulated in a first-order setting via

some variants of Act [8, 9, 25, 5].

However, explicit substitutions are not free of difficulties. Type(l versions of these calculi lead to unex-

l)eeted problems. It is well known now that An does not preserve strong normalization [30], that is, well-typed

terms may not terminate in Act. Furthermore, as a rewrite system, Act is not confluent on open terms [7].

In constructive logic, explicit sut)stitutions and open terms form a framework to ret)resent incomplete

proof, s, i.e., proofs under development [29, 32]. In this apt)roach, recta-variables are place-hoMers in a

proof-term, and an explicit sul)stitution notation is necessary to delay the application of substitutions to

recta-variables waiting to t)e instantiated. Meta-variables have also been used as unification variables in the

higher-order unification nmthods presented in [8, 9, 25].

In order to at)ply explicit sut)stitution techniques in a dependent-tyt)e framework, we develop a A-calculus

of ext)licit substitutions, ealle(t AII£, with dependent types and supt)ort for recta-variables.

The rest of this section gives an overview of the dependent-type theory in which we are interested, and

to the simply-typed version of An. W(, finish the section with a discussion about the main difficulties to

set the An-calculus in a dependent-tyt)e theory. In Section 2 we t)resent the MIc-calculus. Just as the

A-calculus extended with the 7/-rule, which ix not confluent on terms with tytw annotations (not necessarily

well-typed), AIIz; is not confluent due to tyt)e mmotations on substitutions. However, using a technique

proposed by Geuvers in [11], we prove that it is confluent on well-typ(_d ext)ressions. We show how to adapt

Geuvers' technique to AII£ in Section 3. In Section 4 we show the elementary typing properties of AII£ : sort

soundness, type uni(tueness, subject reduction and soundness. In Section 5 we prove the main 1)rot)crties

on well-typed AHc-expressions: weak normalization, Church-Rosser, and confluenc(_. In the last section we

discuss related work and smnmarize our work.

*Institute for Conlput¢!r Applications in Science and Engin(_ering, Mail Stop 132C, NASA Langl(,y Research Center, Hamt)ton.

VA 23681-219!1, email: munoz_icase.edu. This research was supported by INRIA - [/o(:quencourl while the author was an

international f(dlow at the INR1A institute, and by thv National Aeronautics and S[)ace Administration under NASA (1(retract

NASI-97046 while he was in residence at the Institute fl)r Computer Applications in Science and Engineering (I('ASE), NASA

Langley Research C(mter, Hampton, VA 23681-2199.

1.1. Dependenttypes. Tile Dependent Type theory, namely ,_II [18], is a conservative extension of

the simply-typed)_-calculus. It allows a finer stratification of terms by generalizing the function space type.

In fact, in MI, the type of a function _x:.4.M is IIx:A.B where B (the type of ill) may depend on x. Hence,

the type A -+ B of the simi)ly-tyt)ed A-calculus is just a notation in AII for the t)roduet Ilx:A.B where x

does not appear free in B.

From a logical point of view, the MI-calculus allows representation of proofs in the first-order intu-

itionistic logic using universal quantification. Via the types-as-proofs principle, a term of type Ilx:A.B is a

proof-term of the proposition Vx:A.B.

Terms in MI can be variables x,y,..., applications (51 N), abstractions _x:A.M, products IIx:A.B,

or one of the sorts T.ype, Kind. t Notice that terms and types belong to the same syntactical category.

Thus, IIx:A.B is a term, as well as A.r:A.M. However, t ei'nls are stratified in several levels according to

a t yI)(* discipline. For instance, given an appropriate context of variable declarations,)_x:A..M : IIx:A..B,

Ilx:.4..B : Type, and Type : Kind. The term Kind cannot be typed in an 5, context, but it is necessary Sill('("

a circular typing as Type: Type leads to the Girard's paradox [15].

Typing judgments in AII have the form

Ft- M:A

where F is a context of variable declarations, that is, a set of type assignments for free variat)les. We use the

Greek letters F, A to range over contexts. Since types may be ill-typed typing judglnents for valid contexts

are also necessary. The notation

_-F

captures that types in F are well-tyt)ed. The AH-type system is given in Fig. 1.1.

In a higher-order logic, as AH, it may happen that two syntactically different types become identical via

/4-conversion. Rule (Cony) uses the equivalence relation _--_qwhich is defined as tile reflexive and transitive

closure of the relation induced by tim /_-rule: (Ax:A.M N) ----* M[N/x]. We recall that M[N/:rJ is just

a notation for the atomic substitution of the free occurrences of x in M by N, with renaming of bound

variables in M when necessary.

1.2. Explicit substitutions and simple types. The ,\a-calculus [1] is a first-order rewrite system

with two sorts of expressions: terms and substitutions.

Simt)le types are generated from a denumerable set of basic types a, b,... and their fimctional closure,

i.e., if .4, B are simple tyt)es, then A -4 B is also a simple type. V_ll-formed expressions in the simply-tyt)ed

,_c_-('alculus are defined by the following grammar:

Terms M, N

Substitutions S, T

Types .4,/3

::= idl T IAI'S[s°z

::= a,b]A-+ B

In ha, free and bound variables are represented by de Bruijn indices. They are encoded by means of the
n-tinles

constant 1 and the sut)stitution]'. We write]"_ as a shorthand for j" o ... o 1". "_ overloa(t the notatioll _ to

tThe names Type and Kind ar(" no_ standard, other couples of names used in t,|m literature are: (,_el, Type), (Prop, Type)

and (*,_).

I- _ (Empty)

F F- Type: Kind (Tyl)e)

F _- A : Type

x does not appear in F

FU {x : A} _- B : s

s E {Kind, Type}
F _- IIx:A.B : s (Prod)

F _- M : IIx:A.B

F_-N:A

F I- (51 N) : A[N/x] (Appl)

F_-A:s

._E {Kind, Type}

x is a fresh varial)le

_- F U {:r : A}

_F

(x:A) E F
F_-J':A (Vat)

F i- A: Type

x (toes not at)pear in F

FU{x:A}_- 5I :B

FU{:r:A}F-B:s

s E {Kind, Type}
F t- Ax:A.5I : II:r:.4.B

FF 5I:A

F_-B:s

s e {Kind, Tgpc}

A =__ B
F_-M:B

(Var-Decl)

(Abs)

(Cony)

FIG. 1.1. The ,k[l-system

rel)resent the Aa-term corresponding to the index i, i.e.,

1 ifi=li= 1[_"] ifi=n+l.

An explicit substitution denotes a mapping from indices to terms. Thus, id mat)s each index i to the

term i,]" maps each index i to the term i + 1, S o T is the coint)osition of the mapt)ing denoted by T with

the mapping denoted by S (notice that the coinp()siti(m of substitution follows a reverse order with respect

to the usual notation of function composition), and finally, 51 - S mai)s the index 1 to the term M, an(1

recursively, the index i + 1 to the term mapped by the substitution S on the index i.

A context in Aa is a list of types. The empty context is written e. A context with head A an(t rest F is

written A.F. In that case, A is the type of the index 1, the head of F (if F is not empty) is the type of the

index 2, and so on.

The type of a substitution is a context. This choice seems natural since substitutions denote mapping

from indices to terms, and contexts are list of types. In fact, if the type of a substitution S is the context

A.A, the type of the term Inapped by the substitution S on the index 1 is A, and so for the rest of indi(:es.

Typing judgment for substitutions in Aa have the form:

F _- S_, A.

The A_r-('alculus and its typing rules are t)resented in Fig. 1.2. When meta-variahles of terms are

considered, an additional tyt)ing rule is necessary to state that each meta-varial)le is typed in a unique

()_A.l_[N) ----+ M[N " i(_

(M N)[S] _ (M[S] N[S])

(M.M)[S] _ M.M[1. (S o ¢)]

M[S][T] ----+ M[S o T]

![M-s] _ M

M[id] ----+ M

(SloS_)oT --4 SLo(S2oT)

(M . S) o T -----+ ;U[T] . (S o T)

id o S ---+ S

S o id _ S

t o (M. S) -----9 S

1.$ --9 id

![s] . (l o S) _ s

(Beta)

(Application)

(Lambda)

(C]os)

(VarCons)

(hi)

(Ass)

(Map)

(Idl)

(Idr)

(ShiftCons)

(VarShift)

(SCons)

.4.F F- 1: A (Var)

Ft-M:.4_B F FN:.4
F _- (,11 N) : B (Appl)

F F id t_ F (ht)

F F S _, L1 ,'Xl F T _, &2 (Coral))
FF ToS_,A. 2

A.F k M : B
F _- AA.M : A -+ B (Abs)

FFS_,A AFM:A(Clos)
F F M[S]:A

A.F F $ > F (Shift)

FFM:.4 FFS_'A(Cons)
F _- M. S _ A.A

context by a unique type [8]:

FIO. 1.2. The simply-typed Aa-calculus [I]

Fx F X :Ax (Metax).

Th(' siml)ly-typed Aa-calculus with meta-variables of terms is confluent [38] and weakly normalizing

[17, 33].

1.3, Dependent types and explielt substitutions. A det)endent-tyl)e system for MIc is not a simple

extension of the simply-typed Aa-calcutus. First of all, it is not clear how to type expressions containing

recta-variables. Notice that in a dependent-type theory with de Bruijn indices, the order in which variables

are declared in a context is important. In fact, in the context A.F, the indices in A are relative to F. But.

how is the (teI)endence regarding meta-variables?

Even without considering meta-variables, setting A_ in a dependent-tyI)e theory presents diffi('ulties.

Take, fi)r example, the typing rule for simultaneous substitutkms, the (Cons)-rule:

FFM:A Ft-S>A
F F M • S _"A.A (Cons).

A dependent-typedversionofthisrulehastileform

F _ A1 : A[S] r _ S t, A .._X_ A : Type (Co,,,_n
F F- M • S t, A.A)"

First notice that the type given to/11 in the prenfises of the rule ix A[S] (up to conversion). The application

of the substitution S to the type A is necessary to take into account possible dependencies of variables in A

with terms in S. Hence, a type inference algorithm should use a higher-order unification procedure to infer

the type of/11 - S which depends on A.

Another drawback of (Cons[i) is that it is not sound with respect to the usual typing properties. In

particular, a su|)stitution Call he typed with two contexts that are ilot convertible, i.e., types arc, not illliqlle

Inodulo conversion. For example, consider the Colltext 2

F = 0:mtt. l:(IIn:nat.(T n)). T:nat _ Type. nat: Type

and the valid typing judgnmnts

(1.1) F t- [. := O. id] _, x:ma. F

(1.2) F t- (1 0) : (T x)[x := 0.id].

Since (T x)[a: := 0. id] and (T 0)[:r := 0. idJ are convertible via _a, and (T 0)[x := 0. id] ix a valid type,

we also have:

(1.3) F _- (1 0) : (T 0)[x := 0. id].

Using (Cons[i) with (Eq. 1.1) and (Eq. 1.2), we get:

(1.4) F F [y := (1 O) • x := O. i(_ t, y:(T 0). z:nat. F

and with (Eq. 1.1) and (Eq. 1.3):

(1.5) V F- [y := (/0) .a" := 0. it/] _, y:(T z). x:,,at. F.

However, (T 0) and (T x) arc not convertible, and then, the substitution [y := (l 0) • x := 0. id] has two

types, y:(T 0). x:nat. F and y:(T z). x:nat. F, which are not ctmvertible.

To solve these t)rol)leIns, we use tyt)e mmotations in substitutions, in a similar way as the Church style

A-calculus as opt)osed to the Curry style mmotates binder varia|)les in al)straetions. The final version

of (tonsil) has the fi)rm:

F_-/1I:A[S] F_-S>_ _-,4: Type (Cons.).
F _-/11 "A S t> A.5

Annotations in substitutions act as reminders of types, and they must be introduced and maintained by th(,

calt'ulus of substitutions. In our t)revious example, substitutk)ns in Eq. 1.4 and Eq. 1.5 should be annotated

with different tyt)es.

'-'For readability, we use named variables when discussing examples. Nevertheless, as we have said, Act uses a (h' Bruijn

nameh_ss notation of variables.

A different, solution proposed by Bloo in [2] is to introduce substitutions in contexts and to deal with

these extended contexts via additional typing rules. This approach is similar to type systems with definitions

[41, 3], where closures are typeable, trot substitutions are not considered as typeable objects. We discuss

this approach in the last section.

When we consider annotated substitutions, the system nmy lose the subject reduction property due to

the non-left-linear rule (SCons): I[S] "A ($ o S) -----* S. For instance, take the context

F = m:(T 0) --+ nat. ():nat. I:(IInmat.(T 7_)). T:nat --+ Type. nat: Tgpc

and the substitution

S = [:_:= (I o) ._. o>J" := o .,,,, id].

We verify that the following tyt)ing judgments are valid:

F F- S t>y:(T 0). x:nat. F

[" _-![S] ('r _t (? ° S) _ y:(T x). x:7,,t, r.

But also, _I[S] "IT,I ($o S) (SCons), S. However, since (T 0) and (r x) are not convertible, r I-/

S _ !/:(T x). x:nat. F. Therefore, the type of I[S] "IT xl ($ o S) is not preserved by rule (SCons).

The problem here is not the type systenl but the substitution calculus. Non-left-linem' rules like

(SCons) are not only harnfful for typing, but are also usually responsible for non-confluence problems

[26, 7].

Nadathur [35] has remarked that in Aa with meta-variables of terms, but without ineta-variables of

substitutions, rule (SCons) is admissible when the following scheme of rule is added to the system: 1_[1""]-

],,,+a _ j"_. Since 1"" is a shorthand, an infinite set. of rules is rel)resented by this scheme. Following

Nadathur's idea, we present in [33] a variant of Ao, namely Ac, which has the same general features as Aa,

i.e., simph,, finite, and first-order presentation, but without rule (SCons) of Aa.

In this paper, we propose the MIc-calculus, which is based on Az;, and show that AIIc is a suitable

calculus for our tmrpose: explicit substitutions, dependent types and support for meta-varial)les.

2. MIc-Caleulus. As usual in explicit substitution calculi, expressions of)_YIc are structured in terms

aim substitutions. Since we use the left-linear variant of Ao, the +_c-calculus, we add the sort of natural

numbers. The MIc-calculus admits ineta-variables only on the sort of terms.

The set of well-fornled expressions in AIIz; is defined by the following grammar:

Natural numbers _ ::= 0 [7_+ 1

Meta-variables X ::= X I}'[...

Terms A, B, JtI, 5' ::= Kind I Type I1 I IIA.B I AA.M I (M N) I

M[s] Ix
Substitutions S, T ::= 1"" I M "A S] S o T

The equivalence relation -x[lc is defined as the symmetric and transitive closure of the relation in<tuced

by the rewrite s3'stem in Fig. 2.1.

The system IIc is obtained by dropping rule (Beta) front AIIc. As shown by Zantema [47], the Hc-

calcuhls is strongly normalizing.

(AA.MN) ----9 M[N 'A 1"°] (Beta)

(AA.M)[S] ---4 Aa[s].M[1 "A (S o 1"')] (Lamt)da)

(HA.B)[S] _ HA[>;].B[1 "a (S o t')] (Pit

(M N)[S] _ (M-[S] _N[S]) (Ai)plication)

M[S][T] --+ M[S o T] (Clos)

![M ",_ S] ---+ _li (VarCons)

M[j "°] --4 M (Id)

(tll ".4 S) o T ---+ M[T] "A (S o T) (Map)

?0 o S --_ S (hiS)

1"'+1 o (M "A S) _ 1"" o S (ShiftCons)

i "n+l 0 1"m _ 1"" o].,.+1 (ShiftShifl)

1 "A j.l _ I"° (Shift0)

1[_ "n] "A _-n+l --'-+ $" (ShiftS)

Type[S] _ Type (Type)

FIG, 2.1, The AlI£-rcwrite system

LEMMA 2.1. The Ilc-calculus is terminating.

Proof. See [34]. The proof uses the semantic lal)eling technique [46]. []

The AIIc-calculus, just as Aa, uses the composition operation to achieve confluence on terms with

meta-variables. Rules (htr) and (Ass) of Aa are not necessary in AIIz:.

We adopt the notation i as a shorthand for 111""] fi)r i = ,)+ 1. In contrast to Act, I"" is not a shorthand

but an explicit substitution in AHc. Indeed, i,0 ret)lace s id and "[" replaces 1". In general, i"" denotes the

mapping of each index i to the term i + 7_. Using $'), the scheme of rule proposed by Nadathur can be

encoded in a first-order rewrite system. Notice that we (to not assume any meta-theoretical property on

natural mmd)ers. They are constructed with 0 and n + 1. Arithmetic calculations on indices are embedded

in the rewrite system.

2.1. Meta-variables in AHc. As we have said, meta-variables are first-class objects in AIIz:. Just as

variables, they have to be declared in order to kee t) track of possible del)endeneies between terms and types.

A meta-variable declaration has the form (X: cA), where F and A are, respectively, a context and a type

assigned to the meta-variable X. The pair (F,,4) is unique (modulo ---_nc) for each meta-variable. This

requirement is enforced by the type system.

A list of meta-variable de(:larations is called a signature. We use the Greek letter X to range over

signatures. The empty signature is written e. A signature with head (X: rat and rest Z is written (X: rat. X.

We overload the notation El. E2 to write the concatenation of the signatures Zt mid re.

The order of the meta-variable declarations is important. In a signature (XI: r, A l) (X, :r,, A,), the

tyl)e A_ and the context Fi, 0 < i <_ 'n, nlay del)end only on meta-variables Xj, i < j _< n. The in(lices in Ai

are relative to the context Fi.

The main operation on recta-variables is instantiation. The instantiation of a meta-variable X with a

term M in an expression y (where y is a term or a substitution), denoted t)y y{X _ M}, replaces all the

occurrences of .\" in y t)3: M. At)t)lication of an instantiation to a context F (signature E) is denote(1 by

F{X _ hi} (E{X _ M}). It is defined in the obvious way.

Ill ('ontrastto sul)stitutionsof variables,instantiationsof meta-variablesallowcapturingof variat)les.
Instantiati(msarenot first-classol)jects,i.e.,theapplicationof an instantiationis at()micandexternalto
theAIIc-('alculus.

2.2. The AHc-type system, hi AIIc, we consider typing assertions having one of the following forms:

F_'_'. F

to capture that the context F is valid in the signature v

Z: F t- M : A

to (:apture that the term M has type A (the tyl)e M has tile kind A) in Z; F, and

E;F_- S_, A

to cat)ture that tile substitution S has the context type A in E; F.

The SCol)ing rules fi)r variables and meta-variables in the above type assertions are as follows. Contexts

F, __k, and expressions 5i,,4, oc may depend on any meta-variat)le declared ill the respective signature _.

hl(li('es in AI, ,4, and S are relative to their respective context F.

Typing rules for signatures, contexts, ternls, an(t sul)stitutions arc all mutually (tet)endent. They are

given in Fig. 2.2.

hi the following, we use _- E, t- F, F t- M : A, and F I- S _ ,X as shorthan(ts for F E; e, _2e; F, e; F F 51 : A,

and _: F F S :, ._k, resl)e('tively.

Since there are no typing rules for Kind, the term Kind does not occur as a sub-term of a well-typed

expression.

The M-It-system types at least as many terms as MI. In ()tiler words, 3,IIc is a conservative extension

of All.

LEMMA 2.2 (Conservative extension). Let M,.4 be .qround terms in AIIc, and F a ground context such

that 31,.4. F do not contain explicit substitutions, then F F- M : ,4 in AHc if and only if F F- M : A in AII

(modulo de Bruijn indices translation).

Proof. By induction on the typing (terivation. 0

The following lemma states the conditions that guarantee the soundness of instantiation of recta-variables

in AHc.

LEMMA 2.3 (Instantiation soundness). Let M be a term such that E1;F F M : A, and E a si9nature

havin.q the forTrt E2. (X: I".4). El,

1. 4 k r;A, then F- Z|X _ M};_IX _-_ al I ,

2. if S;._k F N : B, then

xtx az}: all e Nix at}: Dlx tt, ,,,,a
3. if E;At F- S :, -¥2, then _{X _-_ MI;AllX _ M} _- SIX _-_ M} _, A.,{X _-_ 211}.

Proof. By induction on tile typing derivation, t3

2.3. Type annotations. Type annotations in substitutions are introduced with rules (Beta), (Lamt)da),

and (Pi), and then propagated with rule (Map). The3" call also be eliminated with rules (VarCons), (Shift-

Cons), and (Shift0). Notice that the type annotation propagated by rule (Mat)): (5I "a S) o T ---* M[T] "A

(S o T) is A, not A[T].

Consi(ler tile following examl)le.

-- (Empty)F-e;e

r. FF- A :.s

s ¢ {Kind, Type}

X is a fl'esh nmta-variable

_- (X: vA). E
(Metavar-Decl)

t- E; F (Tyt)e)
E; F F- Tgpe : Kind

E;F_-A: Type

_"A.F F-B :s

s ¢ {Kind, Type}

E;F F- H,_.B : s
(Prod)

V.F _- M : 114.B

E:F F-N : .4

E; F I- (.AI N) : B[N "A .i.o] (AI,t,1)

E:F F- St> A

E: A F- .4 : Kind

E; F F- A[S]: Kind (Clos-Kind)

E; F F- M : A

E;Ft-B:s

s ¢ {Kind, Type}

.4 -xnc B
E;F P AI : B

(Cony)

_- v'; F (Id)
E; F F- t"° _ F

V. FF S_,A1

v'Al _-Tc, A.,

E;F I- ToSs> A.2
(Comp)

r. FFA:s

s ¢ {Kind, Type}
F- v. A.F

(Var- Decl)

_- v. A.F

E; A.F _- 1: A[_"1] (Vat)

E;F I- A: _tpe

E' A.F _- M:B

_; F I- HA.B :,s'

s C {Kind, Type}
v. F _- A.4.AI : IIA.B (Abs)

E;

E;FFSt, A

E; A F- A :s

E {Kind, Tgpe} (Clos)
r M[s]: A[S]

F-E;F

(X: a.4) _ E

A --AIl£ F

E FF-X:A
(Metavar)

X'.F I- S t, A1.¢..a _

_- r-A.,

'2-._1 _XIlc '.d-_2

r'F _-S [>2__., (Cony-Subs)

_- E; A.F

E;F _-]'" _, A

v. A.F I- ?"+_ (Shift)

E; r M : A[S]

E; A _- A : Type
E; F I- M ._ S _,A.A (Cons)

F[(;. 2.2. The All£-type system

Let F = z:nat. T:nat --+ Type. nat: Type. We verify that

(2.1) F _- (Ax:nat.Af:((T x) --+ nat).Ay:(T x).(f !l) z) : ((T z) _ nat) --+ ((T z) --+ nat).

Reducing the (Beta)-redex and distributing the substitution inside tile abstraction, we get

(Ax:mlt.Af:((T x) -+ uat).Ay:(T .r).(f y) z) (Beta)

(Af:((T x) --+ ,mt).Ay:(T x).(f y))[x := z ",,,a $o] Hc__

._I:((T z) _ ,,a).((._y:(T :r).(f y))[f := f "IT_,l-*,,,tX := Z ",,,, tl]).

We will check that the type in Eq. 2.1 is preserved by the reduction.

Thanks to the rewrite rule (Lambda), the type mmotation for f in the substitution [f := f "IT _)--,,,a

x := : ",,,t 1"l] is (T x) --+ m_t, that is, the type of the variable f before the distribution of the substitution

Ix := z .,,, ?0] in the abstraction Af:((T x) _ nat).Ay:(T x).(f y).

The typing rules for substitutions install the right context of variables. For example, the expression

Ay:(T x).(f y) will be typed in a coutext where the variable declaration f : (T z) _ nat has been replaced

by f : (T x) --+ nat. In fact, we verify

(2.2) f:(T z) -+ nat. F F- [f := f "(_r _)--,,,u x := z ",,,t ?l] _, f:(T x) --+ nat. a':nat. F

(2.3) f:(T x) -+ nat. x:nat. F _ Ay:(T :r).(f y) : (T :r) --+ nat

hence, by rule (Clos) applied to Eq. 2.2 and Eq. 2.3:

(2.4) f:(T z) --+ nat. F _- (Ay:(T x).(f y))[f := f 'IT _)-,,,t x := z ",_ot $1] : (T z) _ nat

and by rule (Abs) applied to Eq. 2.4:

F I-- Af:((T z) --+ nat).(Ay:(T x).(f y))[f := f "(7' ._)..... t x := z ",,a 1"] :

((T z) --+ nat) _ ((T z) --+ mtt).

The above examph, is due to Geuvers and Bloo [13], and it happens to be a counter-example for subject

reduction in cah'uli of explicit substitutions with dependent types where substitutions do not kee t) track of

typing information. The use of annotated substitutions in AIIc keeps the right type when a substitution is

tnotmgated under an abstraction or a product. In fact, as we will show below, subject reduction holds in

AIIc.

However, mmotated substitutions raise a technical problenl: the MIL-rewrite system is not confluent.

The problen_ even exists if we only consider local confllleIlce Oil ground terms. In fact, the following critical

pair is not joinable in the general case, e.g., assulne .4 and B to be different ground MIc-normal forms:

(1-A 1"t) o (M., s)

(Shift 0);(htS)_ _Iap);(\'arC(ms);(Shift Cons);(IdS)

M ._ S M "A S

This t)rotflem is sinfilar to the one pointed out by Nederpelt for the A-calculus extended with the 71-

ruh' [36]. In that case, the confluence property holds on terms without type annotations in abstractions

(A-calculus in the Curry style), but does not on terms with annotated abstractions (A-cah:uh_s in the Church

style). In [11], Geuvers proposes a method to t)rove confluence fi)r the/4_l-reduction on well-typed A-terms

written in the Church style. In the next section we adapt this techtfique in order to prove the confluence

l)rot)erty on well-tyt)ed AYI£ expressions.

10

(AA.MN) ---+ M[N. $0] (Beta)

(AA.M)[S] --_ AA[s].M[1. (S o j'_)] (Lambda)

(l] a.B)[S] ---+ IIA[s].B[1 - (S o 3"_)] (Pi)

I[M • S] ---> M (VarCons)

(M . S) o T _ M[T] . (S o T) (Map)

1''+t o (M - S) --+ "l'" o S (ShiftCons)

1.1 "l __+ $o (ShiftO)

1[?"]-1,,,+ l ----+ $" (ShiftS)

FI(;. 3.1. Modified rules in the Ml_-r_!wri& system

3. Geuvers' Lemma. Geuvers' lemma is a weak form of the Church-I/osser property which suffices

to prove the main typing l)r()l)erties in systems where confluence on terms with type annotations i.e., in

the Church style is not available. Geuvers' technique uses a positive reformulation of the eounter-examt)le

of non-confluence, and the fact that the underlying calculus without typing annotations i.e., in the Curry

style is confluent.

The underlying Curry style of kIIc is called AH_. In this cah:ulus, substitutions do not have type

annotations (but abstractions do keep their t.ype mmotations). The set of well-formed terms in ATI_ are the

same as in kIIc, but substitutkms have the following grammar:

Substitutions S,T ::=]'" [M'S[S°T-

As in the (:as(, of MIc, only meta-variables of terms are enat)led in £H_. The MI_-calculus is obtained

t)y aflbcting the reduction systent AIIc as sh<)wn in Fig. 3.1. As expe<:ted, we define the H_-<:alculus as ATI_

without rule (Beta).

The positive reformulation of the confluence counter-example in MIc states that if two terms are equal

without type annotations, then they are convertible via ------_MIc"

DFI.'INITION 3.1. Th,e erasing mapping I.l : ATIz _ MI_ i.s defined as follows:

Ix I = x if x E {!, Type, Kind} or x is a recta-variable

InA._l -- nlal.IBI

I;_,,_.BI = AI:_I.IMI

I(M N)I = (IMI IXl)

I+_'[S]l = I+_II[ISl]

11""I =1""

ISorl = ISlolTI

1+_+r .a Sl -- tMI. ISl

The following are useflfl properties of the erasing mapping.

LEM.',Ia 3.2 (Erasing properties). Let x and y be expressions in AIIc, w be an expression in)dI_. R

one of the rewrite systems AIIc or Tic, and R D the corresponding rewrite system without type annotation.s,

i.e., AII_ or" II_, then

1. if x R y, then I*l R° lyl or Ixl M

11

I_u t¢
2. if [xt _ w, then there exists w' in AII_ such that x _ w' and lu/I= w, and

3. if .r is an R-normal fornt, then Ix[is an Rm-normal form.

Proof. Properties (1) and (2) are proved by structural induction oil x. Property (3) is a conse(tuenee of

(2). U

Lt.:MXL:X3.3 (Positive counter-example). Let .r and y be expressions in AII£, if lxl = lY], then x -nc y,

and there/ore..r ----)diL; .q.

Proof. Since [a'] =]y], x and y have the same princit)al constructor. We proceed by structural induction

on x. If x= AA.M, !! = AB.N, and]:r[= [YI, then by definition, AIAI.[M [= A/,t.]N [and thus, [A[= tBt

and]M] = [N I. By induction hyt)othesis, ,4 --He B and M -=no N, and thus, AA.M -no At_.N. In fact,

the only interesting case is x = M "A S and !/= N .# T. We get by induction hyl)othesis:

(3.1) M -=no N

(3.2) S -=no T

Since the flm('tion 1.[erases tyt)e amlotations from substitutions, we do not have t)v induction hypothesis

A -no B. However, I)y using the counter-exanq)le, we have

M "t_S _ (1 ".,_1"') o (M -_ S) _ M "AS.

We conchtde with Eq. 3.1 and Eq. 3.2 that x = M "A S =no M -_ S -no N "R T = y. [3

A consequent(, of the reformulation of the counter-exanqfle is that, if we erase the type annotations of

a term 51 and then amiotate if again with an arl)itrary term. we get a term N which is e(tuivalent to 51

nlOdlllO --AII£ •

DEFINVI'ION 3.4. Let .4 be a term in AIIc, the annotation mapping (.)A : AII_ -_ AIIz: is defined as

follows:

xA = x if x E {1_, Type, Kind} or x is a meta-variabh'

(Al_.M)A = A_.MA

(M_\')_ = (M _N A)

(M[s]) A = MA[s_]

(y,).l = 1""

(S o T) A = sA o T A

(M • S) A = M A.A S A

LE.MMA 3.5 (Erasing inverse). Let x be an expression in AHc and A be a term in Arlz;, x ---;_nc Ix[A.

Proof. It is not difficult t() show that if w is an expression in AH_, then w = I.,_1. Let u, = t:rl, by

Leninla 3.3, x ---xnc Ixl A. m

vl'e use the next leninia in the proof of Oeuvers' lemma.

Xl17 .I:A yA.LEMMA 3.6. Let x and y be expressions in AII_ and A be a term in iIIz:, if x _ y, then =xnc

,%I[_" j!A .qA.Therefore, if:r----* y, then -allc

Proof. By induction on the depth of the MI_-redex reduced in x. [-1

The proof of Geuvers' lemma uses a confluence property on the calculus without type annotations. We

left the proof of that property (confluence of AI]_) for the last part of this section.

t2

THEOREM3.7 (Confluenceof AII_). The $H_-calculus is confluent.

THEOREM 3.8 (Geuvers' lemma). Let Aj, Bl, A._,, 132, M, N be terms in MIc,

1. if II4_.B, =xIlc I]A2"/_2, then .41 ----AII_ A2 and BI --._nc 132, and

2. if M =-xnc N, where N is a AIlc-normal form, then there e:rists M' 'if1.AI_ c 8?tch that M _ 3['

,,,,_ larI = IXt.
P_vof. We show only the first case. The second case is similar. 135"Lemma 3.2(1) and the definition of

t-], we have IllA,I.]BI] ----_n2 IIIA=1.[1321. Since AII_ is confluent (Theorem 3.7), there exists M in AII_ such

that II}_4,!.113_1 xll_ 51 and Ilpt.l.1132] xn?_____A[. But there is no MI_-re(lex with a product as the main

constructor, so ill has the forln [IA.B where]-411 _ A, IBI] _ B, 1.421 _ .4, and 113.)[_ 13.

By" Lemma 3.5 and Lelnma 3.6, for any Mlc-term N. A1 -_n_ [Al }X =Mlc AN, Bl ----MIc]131] N ----AII£ 13N,

A._, --Xllc [A2[x =xnc AX- and 132 -xnc [B2[N -Xllc BX. Therefore, Aa -_ltc .42 and 131 =,Xllz 132. Vl

Ttxe rest. of this section addresses the proof of confluence of the MI_-calculus (Theorenl 3.7).

First, we prove that the II_-calculus AII_ witilOUt (Beta) is terminating and confluent.

LEMMA 3.9 (Termination of II_). I1_ is a terminatin9 rewrite system.

Proof. Since any reduction in II_ can be prol)erly sinmlate(l in IIc (Lemma 3.2(2)), any infinite reduction

in II_ corresponds to some infinite reduction in II_. But IIc is terminating (Lemma 2.1), thus II_ is

terminating. [3

LEMMA 3.10 (Confluence of II_). The II_-calculus is co_lfluent.

Proof. We mechanically cheek, e.g., by using the RRL system [23], that the II_-rewrite system has t.h(,

following critical pairs:

• (Id)-(Clos)

M[SI "?.._-+ M[S][T °] "?----_+M[Sol"°I

• (Clos)-(Clos)

M[(S, o S.,.) o T] _ M[S,][S.,I[T] _ M[S, o (S.,. o T)]

• (Shifl0)-(Map)

S II_+ (1. I "1) o S [l_ I[S]" (1 "1 o S)

• (ShiftS)-(Map)

t" o s _ (![1""1•1"''+') os "_---2+ ![1""os]. (t ''+' os)

• (Lambda)-(Clos) and (Pi)-(Clos)

Let $1 = 1. ((S o I"l) o (1. (T o 1"1))) and S., = 1. ((S o T) o t"),

A[SoTI.M[SI] n+ (A,.M)[S][T] AA[,_oT'].AI[S.,]

n..,i,,.o_.l.13[s,] "_,_-+(n._.13)[s][_] "_---2+ n_[.,.o.rl.13[s_]

These critical pairs are II_-joinal)le (we recall that only metia-variables of ternls are admitte(t). Using

an extension to the Critical Pair leimna I)rot)osed in [33] (based on similar extensions originally t)resente(t in

13

(Refill)
•/! ------_ X

-41 ----" BI A., ---- B.)
HAI.B 1 _ ffA.2.B2 - (pill)

(all Nt) ---.-

Sj _ S._,
Sl o Tl

NI _ N2 (Applicationtl)
(al.2 N.,_)

TI _ T.2 (COmPl I)
$2 o T2

,4 _ B 51 _ N (Lambdall)
AA.al _ An.N

M --_ N S _ T
M[S] _ N[T] (Cl°sll)

sl---, x s--. (C,,n._,)M. S N.T

all _ al.,_ Nl _ 5!2
()_A.all Nl) _ a/2[-h[2 " 1.o] (Betall)

FIG. :1.2. The parallelization of (Beta)

[22, 40]), we conclude that II_ is locally confluent. Therefore, by Newman's lemma and Lemma 3.9, II_ is

(:onfluent. 17

The confluence proof of the MI_-calculus uses a general method proposed in [45] to prove confluence of

abstract relations: the Yokouchi-Hikita's lemtna. This method shows to be suitable for left-linear calculi of

exl)licit substitutions [7, 37, 33].

LEMMA 3.11 (Yokouchi-Hikita's lenmm). Let R and S be two relations defined on a set X such, that: 1)

R is confluent and terminating, 2) S is strongly confluent, and 3) S and R commute in the following way:
H 5 It* ,c;R* H*

for any x,y, z C X. if x _ y and x _ z, then there exists w E X such that y _ w and z _ u,.

Then the relation R*SR* is confluent.

Proof See [7]. [3

We take the set of)_II_.-expressions as X, 1-I_ as R an(t BII as S, where BII is the parallelization of (Beta)

defined in Fig. 3.2.

LEMMA 3.12. II_ commutes over BII, i.e., if x reduces in one II_-step to y, and in one Bii-ste p to z

then there exists w such that y u? and z w.

Pwof. By case analysis on the redex redu(:ed in x. [-]

We at'(' now ready to prove the confluence property of AH_.

Theorem 3.7. The MI_.-calcuh|s is confluent.

Pwof. We verify that II_ and BII satisfy the conditions of Yokouchi-Hikita's lemma, that is,

1. II_. is terminating and confluent (Lemma 3.9 and Lemma 3.10),

2. Bll is strongly confluent, since (Beta) by itself is a left linear system with no critical pairs (c.f. [19] ,

an(l

3. H_ commutes over BII (Lemma 3.12).
1VIU] * D riD*

Therefore, Hc D111££ is confluent.

D* H_* C AH_*. Let x be an expression in AII_. If x xn_* _n_*Note that AH_ C H£ BII _ _ y and x _ z, then

there exists tt, such that y u, and z w. So, y _ w and z _ u,. D

4. Elementary Typing Properties. The elementary typing properties of AIlc are

• Sort soundness: the type of a term is a valid sort.

• Type uniqueness: the tyt)e of a term is unique module -xttc.

• Subject reduction: the AHc-rewrite systen| t)reserves typing.

• Soundness: there always exists a path of well-typed terms between equivalent well-typed terms.

We use Geuvers' lemma to prove the last two of the at/ov(_ t)rot)erties.

THEOREM 4.1 (Sort soundness).

1. If _,v"F F M : .4. then A = Kind 07" E'.,F F .4 : s, s C {Kind. Type}, and

2. /f E;FFS>A thenV'A._,

Proof. By induction oi1 the typing derivation. [3

TIIEOREM 4.2 (Type uni(luencss). Let FI and F.,_ be such that F, -_nc F.z,

I. ff E;Ft F M :+4 and r;F._, t- AI : B, then A =M[c B, and

2. /jr E;F1 _-St) A_ and V'F.,FSt>A.,, th,en '-kl -xnc A.,

Proof. By simultaneous structm'al induction on M and S. 0
AI]£ "

THE()RE,_I 4.3 (Sut)ject r(_duction). The AIIc-calculus preserves typing, if :r _ y, for an e,,zTiressioT_

x. then

1. if x is a term and E; F k x : A, then E; F k y : A. and

2. if x is a substitution and _'" F _- :r t> A, then E F F y t>_k

Proof. We show that typing is preserved for one-step reductions (i.e., xn_), and therefore, it is also

Allcfor the reflexive and transitiv(i oh)sure (i.e., xnc"). Let x _ !I be a enid-step reduction. \V(, t)roc(_(,d t)y

induction on the depth of the red(,x r(_duc(_d in x.

In the initial case, :r is re(h]ced at the top level, an(l we proceed by case analysis. \V(, show the case of

rule (Beta):

Let Z;F t- (Aa.5l N) : B. We show E;F t- M[N.A _o] : B.

V(have:

1. (a) Z:F t- A,t.M : IIA,.B], It)) E;F t- N:AI, and (c) B -_nc B_[N-.4, t"°], by inversion of rule

(Appl) applied to the hyt)othesis.

2. (a) S;F t- A : Type, (h) Z;A.F F M : /32, (e) Z;A.F t- B., : s._,, s2 C {Kind, Type}, and (d)

IIA.B.,_ -xnc HA_ .Bl, t).v inversion of rule (Abs) applied to (1-a).

3. (a) A --,xllc AI and It)) 132 -_nc B1, by Geuv('rs' lemma (Theorem 3.8) applie(t to (2-1t).

4. Y..;F F- N:A, by rule (Conv) at)plied to (1-11), 12-a), and (3-a).

5. _,_"F F N "a _o _ A.F,. by. ruh _ (Coils) applied to (4), (2-a), and _'_,F F $o t> F.

6. B2[N "A 1"')] ------xnc/31{N "A 1"°] --_[tc Ba[N "A_ 1"°] -_nc /3, by (l-e) and (3).

7. v.._,F F B : s], sl G {Kind, Type}, t)v. sort soundn(_ss (Theor(_m 4.1) applied to t h(, hvl)oth('sis.. Note

that tim case s = Kind is not possil)h_.

Therefore, we have the derivation

_,v"A.F _- M : B.,_ (2-b)

,'"A.F t- B.,_ : 4.,_ (2-e)

-_,v"F F-5: "a 1"° _"A.F (5)

Z; r _- M[N "A $o]: B._,[N "A].o1
(Clos)

Z;F t- M[N.A ?o] : B
(6) (7)(con,,)

The ottmr cases are similar. The induction step cases do not t)res(,nt any difiiculty. I-1

15

Sometimes the conversion rule (Cony) is expressed as [14]:

F t- M : .4

FI- B :.s

s E {Kind, Type}

A ---* B or B _ .4

r F- M : B (Cony')

Rule (Cony) seems to be more general than rule (Conv'). In fact, the latter one allows conversions of

types only via a path of well-typed terms. Geuvers and '_rner [14] define a type system to be sound if the

convertibility of terms remains in the set of well-tyl)ed terms. In sound systems rules (Cony) and (Cony')

are equivalent.

We use the following lemma in the soundness proof of the AHc-system.

LEMMA 4.4. Let :r,y be AIIc-expressions in IIc-normal form such that Ixl = lyl, if x and 71are well-typed

e:rpressions, then they are convertible via a path of well-typed expressions.

Proof. By structural induction on x and y. l-1

TItEOtII_:M 4.5 (Soundness). If z;r _- M : A, E;F F- N : B and M -xHc N, then M and N are

convertible via a path of well-typed terms.

Proof. From Lemma 3.2(1), we have IMI =xH_ INI. The confluence t)roperty of AH_ states that there

exists x E M-I_ such that I_hi["_n°" "XIl°*x and I_l ----* _'. By Lemma 3.2(2), there exist M1,N1 in MIc

such trhat M _ 311, N _ Nt, and [AIal = INI{ = x. Since IIc is ternfinating (Lemma 2.1), there

exist M.,_,N.2 IIc-normal forms such that 3It _ M.,, -Nl _ N.2. By the subject reduction property

(Theorem 4.3). E: F F- M=, : .4 and E; F I- _:2 : B, and all the terms in both reductions are well-typed.
[] * ll_ *

Now. from Lenuna 3.2(1), we have a" _ IAI21 and :r _ IN21- But M., and N.e arc, Ilc-normal

forms, thus, bv Lemma 3.2(3), IM'_,I and la'l are n -normal forms. Since I1_ is confluent, IM.,_I-- IN._,I. By

Lemma 4.4, M.z and N._, are eom_ertible via a path of well-typed terms. Therefore, M and N are convertible

via a path of well-typed terms. 13

A direct consequence of typing soundness and subject reduction is the fi)llowing property.

LEMM:\ 4.6. If E; F F- M_ : .41, E; F t- _12 : .42, and Ma =Mlt: M._,, then Al =-_,MI£ A2.

Proof. By induction on the length of the paths of well-typed expressions converting 2_I1 to M2. 13

5. The Main Properties: Weak Normalization and Confluence. In this section we address the

proof of the main properties of AII£ on well-typed expressions: weak normalization and confluence.

5.1. Weak normalization. The MIc-calculus does not preserve strong normalization of AII. In fi_ct,

the counterexample shown in [30] for Aa may I)e reproduced in AHc with some minor modifications.

Nevertheless, we prove that MIc is weakly normalizing on well-typed exl)ressions, i.e., there exists a

strategy to find MIz;-normal forms on well-typed expressions. In particular, we propose a proof of strong

normalization of the strategy that t)erfi)rIns one step of (Beta) followed by a IIc-normalization.

V_'e use the standard technique of reducibility originally due to Tait for the simply-typed A-calculus

[42], and then extended by Girard to the system F (the A-calculus of second-order) [15]. From the diverse

t)roofs of termination using a reducilfility notion, we follow the presentation given in [12] for the Cah:ulus of

Constructions, which is based on saturated sets. \Ve adapt this proof for the MIc-calcuhls. In order to avoid

some technical problen,s due to the non-confluence of the calculus with type amlotations (not necessarily

well-typed), we define saturated sets in a slightly different way. However, the structure of the proofs is the

sallle.

16

V_ use (x),[.nL as a shorthand for tile set of He-normal forms of x. The set containing all the IIc-normal

forms of Age is denoted t)y Aft'.
31]c (Beta)

DEFINITION 5.1. Let x, y E AfJF, we say that x 3I]c-reduees to y, denoted by z -----* y, if .r _ w

and y E (W)$nc. Notice that the set of/:tHe-normal forms is equal to the set of MIc-normal forms, and
,31It XHc*

that x _ !l implies .r _ y. In fact, we will show that ,:_I1£ is strongly normalizing on well-typed

expressions, and therefore, AFIc is weakly normalizing on well-typed expressions.

We denote by &,%: the set of ,3lie-strongly normalizing expressions of,,'_U.

DEFINITION 5.2. Let 211 be a term in A;.T. The term 211 is neutral if it does not have the form AA.N.

The .set of neutral terms is denoted by .&:T.

DEFINITIO.'," 5.3. Let x be in .U.T. The set of atmotations of x. denoted by _(:r), is defined inductively

as follows:

8(x) = 0 'if x E {Kind, Type, 1_} or x =$"

s(nA.z_) = S(A) uS(B)

I_(£A.M) = S(A) U N(M)

_(M x) = s(211) us(x)

s(M[s]) = s(21hus(s)

l_(S o T) = b_(S) u R(T)

_(M -a s) = {A} u S(M) u S(S)

or x is a meta-variable

DEFINITION 5.4. A set of

1. A C_&_',

2.

3.

terms A C_Aft" is saturated if

if AlE A and M zm_ N, thenN E A.

if 211 E .UT. and whenever the reduction of a 3Hc-redez of 21I leads to a term N E A. t/ten 21I E A.

and

4. if 21[E A, IA1f= IXl, and S(N) C S,_", then X E i.

The set of saturated sets is denoted by SAT.

The following corollary is a trivial consequence of Def. 5.4(3).

COROLLARY 5.5. Let 211 E :%'T such t/tat M is a flIIc-norvnal form, for any A E SAT, M E A.

The following lemmas show particular cases of terms that are in saturated sets.

LEMMA 5.6. For any A E SAT, substitution S E ,S,_', and meta-variable X, we have (X[S])$nc C_A.

Proof. Let A E SAT and 21I E (X[S])$nc. Since 211 is neutral it suffices to (:onsider the reductions of 21I

(Def. 5.4(3)). We reason by induction on u(S) 3. Only two reductions are possible:

• 21I _ X, and by Corollary 5.5 X EA.

• 211 ,m______X[T] where S _ T. By hyl)othesis, T E SA', and u(S) > u(T), so by induction

hypothesis, (X[T])$nc C_A.

In both cases, 211 reduces to terms in A, thus, M E A. gl

LEMMA 5.7. For awg A E SAT, and terms A,B E SA,', IIA.B E A.

Proof. The term 11[.B is neutral. By Def. 5.4(3) it suffices to consider the reductions of IIA.B. We

reason by induction on u(A) + u(B). [3

LEMMA 5.8. S,,\:" E SAT.

Proof. We verify the following conditions (Def. 5.4).

3-if x is strongly n()rmalizing, v(x) is a number which bounds the length of every normalization sequence beginning with

," [[(].

17

1. S.:_: C SA 7.

2. If M E SA _ and M _ N, then N E S:_:'.

3. If :11 E .,k"T, and whenever the reduction of a 3IIc-redex of M leads to a ternl N E S,kf, thell

M E SA:.

4. If M E &_k', [M[= [N[, and R(N) C_S.,k', then N E SA.'.

DEFINITION 5.9. If 3, A' E SAT we define the .set

i -+ i' = {M E .X'fl w\7 E i (3i ev) E A'}.

LEMMA 5.10. SAT is closed under fimction spaces, i.e., if A, A' E SAT, then 3- -+ A' E SAT.

Proof. We verify tit(, conditions in Def. 5.4:

1. A -+ A' C SA".

Let M be in A -+ _V. By Def. 5.9 and Def. 5.4(1), (M N) E A' C_S,k" for all _N E A. Thus, M E 8A.".

2. 1f'M E A +A'and M _m_.___N, then NEA-_A'.

Let Nt be in A. We stiow that (N Arl) E A t- By hypothesis (M N1) E A' and (M Nl) _ (N Aq).

Thus, (N Nl) E A' by Def. 5.4(2).

3. 1t" M E A'T. and whenever the re(luctiotl of a 3Hc-redex of kl h'ads to a term N E A -+ A', then

M E A _ A'.

Let :\'l1)e in A, we show that (M Nl) E A'. Since (J_l NI) E ,k'T, it suffices 1)3" Def. 5.4(3) to prove
Allc

that if (M N,) _ N.2, then N.2 E A'. We have Nl E A C SA'. We reason by induction on v(Nj).

Sill(;(' ,_I E .k"r, (It1 :\:l) 13I]z:-reduees ill one ste I) to

• (_'tll N1), with M _ Mi. By hYt)otheses, 2lll E A -+ A' and Ni E A, thus (M1 571) E A".

• (M N.,), with NI _ll___._eN._,. By Def. 5.4(2), N=, E A and u(N.,) < v(Nl), thus. by induction

hyl)othesis, (A1 N'2) E A'.

In both cases. (3i ._rl) reduces to terms in A'. Hen(re, (5I N1) E A'

4. if ,1i E A _ A'. IMI -- tXl, a.d S(N) c_sA', t i,e, N E i _ i'.

Let Nl be in A. We show that (N Aq) E A'. By hypothesis, (M .A,rt) E A', but also, [(M N_)I =

](:Y N1)I. By Def. 5.4(4), it. suffices to show that R(N NI) C S,k'. Since Nl E A C_S.k,', we have

R(NI) C_SA'. Therefore, R(N Nj) = R(N) U R(N1) C_$,Y'.

The next step in the t)roof is the iilterpretation of tyl)es.

DEFINITION 5.11. The tyt)e interpret, alton funct, ion of terms in AIIz is defined inductively as follows:

[a'] = $3,"

D:[s]_ = I,_I]

i(M :\)] = Dz]

[nA.B] = 1.4] --+[B]

if x E {Kind, Type 1} or x is a meta-variable

We have the following corollary of Lemina 5.10.

COROLLARY 5.12. For arty term M, [21I] E SAT.

Lists of tyl)eS, i.(,., ('ontexts, are interl)reted by a set of explicit substitutions.

18

DEFINITION 5.13. The valuations of F, denoted by _F], is a set of substitutions in A:5 defined

inductively on F as follows:

LEMMA 5.14. For any F, [F_ C_SA:.

Proof. We show by structural induction on S that if S • _F], then S • SA:. n

DEFINITION 5.15. Let M be a term in A:2K and S be a substitution in N'.T. Wt_ define

1. F satisfies that M is of type .4, denoted by F _ M : A, if and onh/ if (M[T])$uc C 1.4] for any

T • [rl.
2. F satisfies that S is of type A. denoted by r _ S _, A, if and only if(SoT)S11 _ C_ [A_ for any

r • ff].

We are almost ready to prove the key property which leads to the strong normalization property of dIIc.

It states that if F _ M : .4, then F I- M : .4. Before that, we need some more technical lemmas.

LEMMA 5.16. Let A be a ternt in 8,_:. For all substitutions S • _F] and term M • [A]. (M-_ S)$II _ C

[.4.r].

Pro@ Note that M "A S is not necessarily in A:¢-. But there are two cases: (M "A S)$n c = {M "A S}

or (M "A S)$n c = {$'}. In t)oth cases we verify that (M ".4 S)$n c C_[A.F]. U

LEMMA 5.17. Let M a term inA:_, if E;F F- M : A and E;F F- A : Type, then [AI]= SA:.

Pro@ By structural induction on M. We show the cask where M = (M1 M2), the other cases are

similar. _,_,_have:

1. (a) E;F t- M_ : IIa,.Bl, (t)) E;F t- (5I, M._,) : Bl[_lh "A 1 _'()], and (e) A _-_XIIc BI[M2 ".4, 1,0], by

inversion of rule (Apt)l) applied to the hypothesis.

2. (a) E;F t- .41 : Type and (b) E;AI.F I- B1 : .sl, .sl • {Kind, Type}, by inversion of rule (Pro(l)

applied to (l-a).

3. E; F F-B_ [Me "A, j,0] : s2, se • {Kind, Type}, by sort soundness (Theorem 4.1) applied to (1-1)).

4. s.2 =--Mlc Type, by Lemma 4.6 applied to E; F t- A : Type, (l-c), and (3).

5..s.2 = Type, by Geuvers' lemma (Theorem 3.8) applied to (4).

6. Sl = Type, by (2-1)), (3), and (5).

Then, applying rule (Prod) to (2) and (6), we get E;F _- HA,.BI : Type. By Def. 5.11 and induction

hyt)othesis, [(2ill M_) 1 = [[-_IL_ = $,_:.

LEMMA 5.18. Let M be a term in A:.T and S a substitution in, A:T,

1. if E;FF-5I:A and E;FF-M:B, then[All = _B], and

2. if _-.;r _- S _" '2.._1 and E;F t- S _, A_, then [A,_ = IA.,_i.

Proof. "_ only show the frst case. The second case is proved by structural induction on AI. By type

uniqueness (Theorem 4.2), we haw' .4 -,me B, and by sort soundness (Theorem 4.1), A = B = Kind or

(E; F I- .4 : s_, E; F F-B : s.2, and s,, s2 • {Kind, Type}). The first case is trivial. For the second one, we use

soundness of AIIc (Theorem 4.5) to conclude that .4 and B are convertible via a path of well-typed terms.

Hence, it suffices to t)rove that for any well-typed term N_, if .N_ _ N.2, then [N_ 1 = [N.,_. We 1)rove

this t)y indu('tion on the (lel)th of the dIIc-re(tex reduced in N_. The only interesting case is (VarCons). i.e..

I[M_ "a, S] ---- M_. We show that _I[M_ "A, S]] = [M_].

• From Def. 5.11, [I[M, 'a_ S]] = [!1 = $.'_:.

19

• If 113,/1 ",41 S[is well-typed in Z; F, then by inversion of rule (Cons), we have Z; F _- M_ : A_ [S] and

Z: F _-.4_ [S]: Type. Therefore. t,y Lemma 5.17, _Ml_ = SN.

s,,. = Iah = D
Lt.:MMA 5.19. Let Ai E SA". and M,A.,_,B E A_.T, if for all N E [A2_, (M[N-a, i"0]).[-llc C IBm, th,en

Proof. Let N E _.4._,[. \V(, want to show (A.4_._I N) E [B]]. Since (AA_.M N) E .\ST and _B[C_ SAT,

it suffices to prove that if (A.a,.M N) _ M', then M' G _B_. By hypotheses, for all N E _.42],

(M[N-,, $"1)'[,,c C_ _/3_ C_ S,'k,'; in particular, (M[_I 'A, $"])$uc C_ S._'. But, M E (M[1 "AI J'°])$nc, and

thus, M E SA'. We also have N E 7.42] C SA, _ and A1 E SA:. Thus, we can reason by induction on

v(M) + u(N) + u(.4t). hi one step (AA1.31 N) /_IIzz-reduces to:

• (MtN "A_]'°D$1,c. By hypothesis. (M[N 'A_ 1"('])¢1,_ C_ _B I.

• (Aa, .M N,), with N _ N_. By Def. 5.4(2)..N_ E [A2]], then by hypothesis, (M[N, "A1]'['])$nc C_

[B]. But also, v(N_) < u(N), thus, by induction hypothesis, (AA1 .M Nt) E [B].

• (AA._I N), with At Ju_____A. But .4 E ,.-q3,",since A1 E S._', therefore, for any 2ilt E (M[N "A $°]).l-n c ,

R(3lt) C_&'C. We have, I(M[N "a, i"°]).[.n_ I = I(M[N 'a l"°])._n_]4. By Def. 5.4(4), latin c
fB]. But also u(A) < U(Al), |hum by induction hypothesis, ()_A.M N) E [B].

• (An, .Mr N), with M _m____c._I1. Using the properties of AIIc and MI_, if N_ E (M[N ".4, J'0])-_llc,

then .Y, ,¢tt____£cN.2, where IN',[=](MI[A: "A1 1"°])$n_ I. By hypothesis, N_ E [B l, thus, I,y Def. 5.4(2),

3,2 E _U_. Since 3Il and At are in SA:', for any M.2 E (]ll_ [N "A1]'0])$n_, R(M2) C_SAS. We obtain

(MI[N "A_ _'°])_.llc _ [B_ 1)y Def. 5.4(4). But also l.'(M,) < v(M), thus, by induction hypothesis.

It, any case. (A.41 .M 3/) reduces to a term in [B_ and, therefore, (AA, .M N) E _B_. [-1

We are ready t() t)row' the key lemma, the soundness of _ with respect to t-.

LFMM:\ 5.20 (Soundness of _). Let 3I, S E ,_r.T,

I. if Z: F F- 3I : .4. then F _ M : A, and

2. ifX:F/ Sr,_X, thenF_S_,L.

Pro@ Let T E IF_. We proceed by simultaneous structural induction on M and S. '_,i, show the main

cases. It, the t)roof, _A(S) is a shorthand for 1 "A (S O ?1).

• 31 = X (X is a me|a-variable). We show that (X[T])$u c C_ JAIl.

There are two cases:

_ f =1,o. Therefore, (X[T])$nc = {X}. But also, X is a neutral /_IIc-normal form. Hence by

Corollary 5.5, X E [.4_.

r #1"°. Therefore, (X[T])_.nc = {X[T]}. By Lemma 5.14, r E S.U. Hence I)y Lemma 5.6,

X[T] E 7.4].

• M = Ilnl .B,. We show that (HA1 .BI [T]).l-uc C _A]].

By inversion of rule (Prod), Z; F F- At : Type and Z;.4_.F _- B, : .s, s E {Kind, Type}. Note that if

M, E ((Ilnl .B_)[T]).[.nc, then MI = IIa.,.B._,, where .42 E (&[T])+Hc mid B., E (B, [_a, (T)])+H_.

By induction hypothesis on At, (At[TI])$H_ C_ [Typ4 = $:%r holds for all Tl E _F]. Assuming

T_ = T, we conclude A2 E $._:', and assuming T_ =1.0 we ('onclude A_ E NN.

Let T_ E (1_.4_(T))$nc. We have IB2I =](BI[T'2])$1_] and 7"2 E _A.F]. By in(tucti(m hyt)othesis on

B,, (B)[T._,])$nc C_ _._] = SA," hohts. But, R(B2) C_&U. Hence by Def. 5.4(4), B2 E [.s] = S,U.

4Since the ll_-(:alculu.s (1I£ without annotations of types in substitutions) is conflu(!nt (Eemma 3.10), we use the following

l)rol)erty: ['or any MI,M'2 _ (M)+I1 c, 12'_11l = IM2[.

2O

D

B

Since A2, B.) are both in SN', we have HA_.B2 6 [A] (Lemma 5.7).

M = .M,. showthat (AA,.MI C
By inversi(m of rule (Abs), E;F F Al : Tqpe, E;A,.F _- 2111 : B and E;F F AA,.M, : IIA_.B.

By Lemnm 5.18, [[A] = _IIA,.B] = _.41_ -+ [B]. Note that if N E ((AA,.M,)[T])$H C, then

N = A.4_.M_, where .4._,G (A, [T])$II c and 512 E (Mj [_'A, (T)])$uc. By induction hyt)othesis on Aj,

(A_ [T_])$nc C_ [Tyl, e] = S.U hohls for all T_ E IF]. Assuming T_ = T, we conclude A., E SA/, an(l

assuming T1 =1 "a, we conclude .41 C $Af.

Now we i)rove that AA_.M._, • [.41_ --¢ _B_. From Lemma 5.19, it suffi('es to prove that for any N_ •

[[A1], (512[N1 "A., $°])$u c C_ [IBm. Let N2 • (M._,[N! "A., J'('])$uc mid T2 • (_A, (T) o (NI "A2 T°))$nc -

We verify that I3,'._,[--](M, [T2])$1,c] an(t _ • [.4, .F_. Therefl)re. l)y induction hyI)othesis on M,,

(Al, [T._,])$itc C_ IB]. But S(N:t) C_SA:', thus, .\':t • [B_ by Def. 5.4(4).

Now, we show thai !_Hc is strongly normalizing.

LEMMA 5.21 (Strong normalization of 31-I_:). Let 51 be a term in A:'.T aud S be a substitution in Af.T.

1. If E;F F 5I : A. then M • $.,_:, and

2. if E;F F S _. A, th,en S • S.'\;.

Proof By Def. 5.13, $o• _FI.

1. By Lemma 5.20, 31 • (M[?°])$u_ C_ L4]. By Corollary 5.12 and Def. 5.4(1),]JAIl C_$:k:'.

2. By Lemma 5.20, S • (S o 1"°)_[i£ C_ i,__], all([})V Lemma 5.14, [.A] C_&U.

Finally we prove weak normalization on well-tyt)ed MI_-exl)ressions.

THEOREM 5.22 (Weak normalization). Let 51 be a te_vn in ,_I]c and S a substitution in M]c.

1. If E; F F 51 : A, then M is weakly normalizing, and

2. if Z; F F S _, A, then S is weakly normalizing.

Therefore M and S have)_II_-normal forms.

Proof By Lemma 2.1 there exist 5I_,$1 • .%'F such that 51 ll_____ 2111and .5' _ $1. The sul)je<'t

reduction theorem (Theorem 4.3) states that typing is preserve(l under reductions. Hence, E; F F 5It : A

and E; F t- S1 _, A. Therefore, by Lemma 5.21, Mt and Sl are both in S,_,'. Finally, note that 3II_:-nortnal

forlns in A'5 _ are)die-normal forms, to(). []

5.2. Confluence. The Church-Rosser property states that if two well-typed expressions are convertil)le,

then they are joinabh?. The confluence property states that all the reductions of a well-type(l expression are

jomable.

We nee(t the folh)wing lemma coined in [44].

LEMMA 5.23. Let :r and y be AIIc-normal forms such that x --__[_c y. Then. :r = !1 if

• ;r is a term. v._,F, Fx:A andE',F.,_Fy:B, or

• :r is a substitution, ..,v"F_ b x _ A,, _'-, F.,_b y _, A.,_, and A, =-XHc A.,._

Proof By Lemma 3.2(3), Ixl and I!/I are)_H_-normal forms, and by Lemma 3.2(1), I:rl --=-xH_]yl. Since

)_II_ is (:onfluent (Theorem 3.7), Ixl = [yl holds. Finally, we proceed by structural induction on x. We use

the fact that sul)-terms of well-tyt)ed normal forms are well-tyt)ed normal forms. The only interesting case

is x = M[T]. Since x is a MIc-normal form, only two cases are possible:

• 51 = 1 and T =1""+'. This case is trivial, since 1)y Def. 3.1,111 ""+'] = I111""+111. Therefore, x = y.

• 51 = X, where X is a meta-varial)le and r ¢1 "°. By hyp<)thesis, y = X[T_] where Irl = Ir, I. B:,

Lemma 3.3, T -auc Tt. Let _ I)e the type of T and -_ the type of T_. By the inversion of ruh'

2l

0

(Ch)s) applied to a" and .q, it holds that X is well-typed in both contexts A and A1. By inversion of

rule (Metavar), A -xnc A1. Thus, by induction hypothesis, T = TI, and thus, x = y.

The above property is not valid when .5, _nc .52. Take, for example, the context

F = m:(T 0) _ nat. 0:n, at. l:(Ib_:nat.(T n)). T:nat --4 Type. rod: Type

and the two substitutions

SI = [._:= (l 0)'17 _.1a":= 0-,.,t _0]

all([

= 1-°].S._, [y := (1 O)"('r o)x := 0 ",,or

By Lemma 3.3, $1 _AIl_ $2. Also,

F F-Sl > y:(T x). x:nat. F

alia

F b S._, t>y:(T 0). x:nat. F.

In this case, the well-tyt)ed sul)stitutions $1 and $2 are --ant-convertible, but they are not identical.

TIII-:OllEM 5.24 (Church-Rosser). Let x and y be such. that x -Mlc Y. Then, x and y are M-Ic-joinable,
X[]c*)dl£*

i.e.. there exists a, such that x _ u" and y _ w, if

1. x is a term, E;FI [- a" : .4 and E;F2 _- y : B, or

2. :r is a substitution, E;Fj t- x t, Al, E;F2 _- y t, _2, and _l --XHc A2.

Proof. By weak normalization theorenl (Theorem 5.22), there exists AHc-normal forms x' and y' such

that x _ x' an(t y _ y'. It suffices to show that x' = y', which is a consequence of subject reduction

theore,n(Theorem 4.3)and Lemma 5.23.

Confluence of AIIc is a conse(tuenee of

(Theorem 4.3).

O

the Church-Rosser proI)erty (Theorem 5.24) and subject reduction

COROLLARY 5.25 (Confluenee). Let x be art arbitrary well-typed expression. If x xnc" y and x z
>,Fir. * AI]_ *

for some y,z, then their exists w such that y _ w and z --_ w.

Since)d-It enjoys I)oth Church-Rosser and weak normalization, we have that AIIz:-nonnal forms on well-

typed terms always exist an(t they are mfique. Thus, the equivalence on well-typed expressions is decidat)le.

COI_OIA_ARY 5.26 (Deeidat)itity). The equivalence x --x[[c Y is decidable 'if

• x is a terTn, E; ['1 _ X : .4 and E; F2 t-y : B, or

• x isa substitution, E;Fl F-x_,A Y;F2i-yt,.5.

6. Related Work and Conclusion. Explicit substitutions and the let-in constructor of fimetional

ML-style programming languages have similar characteristics. In both meehmfisms the application of a

substitution to a term can be delayed. For example, let x := 0 in Ay:A.:r will be unfohted to Ay:A.0, in the

same way that (Ay:A.x)[x := 0] reduces to Ay:A.O. In their simply-typed versions, explicit sut)stitutions and

let-in constructors act in the same way. However, in dependent-type systems, the relationship between

both mechanisms is not immediate.

22

To illustrate this, let us take the typing rule for closures explicit applications of substitutions to

terms- in a dependent-tyl)e system:

FF-St, A AF-M:A ...

F k _I[S] : A[S] (Ch,sH).

Consider the context

F = m:(T 0) -+ nat. 0:nat. l:(IIT_:,_at.(T 7_)). T:nat -+ Type. nat: Tqpe.

Using the above tyl)ing rule, tit(' t(_rm (m (I x))[x := 0] is ill-typed. This is because the information that the

variable x will be substituted by 0 in (m (l x)) is not taken into ac(:ount by rule (Closn). Therefore, tim

tyt)e of (/x) is (T x), but not (T 0) as ext)e(:ted l)y m. On the other hand, the same tern! can he written

using the let-in notation as: let x := 0 in (m (/x)). This term is well-tyl)ed because x has the value 0 in

(m (l x)), and thus let x := 0 in (m (1 .r)) is going to be typed as (m (1 0)).

The unfolding of definitions before typing is not sutficient when we admit meta-variat)les. The reason is

that substitutions and meta-w_riat)les may aI)pear in normal forms, h! this case, we cannot avoid having a

(Clos[[)'s like rule. Tile apt)roach we have taken is to consider explicit substitutions different from the let-in

me(:hanisnL The ext)licit sul)stitlltion te(:hnique allows substitutions to be l)art of the formal language t)y

means of st)ecial constructors and redu(:tion rules. In this way, the term (m (1 .r))[x := 0] is ill-tyl)ed , .just

as the term (Ax:na/.(m (1 :r)) 0) is. The let-in stru(:ture has a more (:onq)lex behavior. It I)rovides a

mechanism for definitions in th(, language. F()rmal i)resentations of tyt)e systems with definitions are given

in [41, 3].

Some type theories extended with ext)licit sut)stitutions have t)een l)roposed: Th(, Simple Tyt)e Theory

[1, 27, 8, 21, 6], the Second-Order Tyt)e Theory [1], the Martin L6f Type Theory [43], the Calculus of

Constructions [39], and Pure Type Systems [2]. Except for the simply-typed version of Art in [8], neither of

them considers tin'ms with meta-varial)les as first-class objects.

Our main contribution is the complete meta-theoreti(:al development of a del)endent-type system with

ext)li(:it substitutions which handles explicitly open exI)ressions (i.e., expressions with meta-varial)les). The

system enjoys the usual tyt)ing t)rol)erti(,s: type uni(tueness , sul)j(_ct reduction, weak normalization, and

confluence. Apt)lications of such a (:ah:ulus are frameworks for the representation of incomph't(' t)roofs, and

first-order settings for higher-order unification t)robleins.

In this l)aI)er, we have presented the AIl-theoi'y. Although flfll polymorphism or inductive definitions at'(,

not considered in this theory, the main difficulties, due t(/the nmtual dependence t)etween terms and types,

already arise in AI1. Other theories, such as the Cah:ulus of Constructions, can be considered as the logical

fl'amework for AIIc [34]. Note also, that AIIc does not handle the 71-rule. Extensional versions of exl)licit

substitution (:ah:uli have been studied for ground terms [24]. However, work is necessary to understand tile

intera(:tion with dependent types and meta-variat)les.

Acknowledgments. A major t)art of this research was done while the author was a resear(:h assistant in

the Coq Project at INRIA-Rocquencourt. Many persons have contributed to this work with useful wmarks

and suggestions, in t)articular Gilles Dowek, Delia Kesner, and Nikolaj Bj0rner. The attthor is very grateflfl

to them.

23

REFERENCES

[1] M. ABADI. L. CARDELLI, P.-L. CUR1EN, AND J.-J. L_vY, Explicit substitution, Journal of Functional

Programming, 1 (1991), pp. 375 416.

[2] R. BLOO, Preservation of Termination for Explicit Substitution, Ph.D. thesis, Eindhoven University of

Technology, 1997.

[3] R. Bl,oo, F. KANIAREDDINf':, AND I:{. NEI)ERPH_T, The Barendregt cube with definitions and generulised

reduction, Inh)rmation and Computation, 126 (1996), pp. 123 143.

[4] R. BLoo AND K. H. ROSE, Preservation of strong normalisation in named lambda calculi with explicit

substitution and garbage collection, in Proceedings of CSN-95: Comt)uter Science in the Netherlands,

Nov. 1995.

[5] D. BI_IA1;I), Higher order unification as a typed narrowing, CRIN report 96-R-112, 1996.

[6] I'{. D. COSMO AND D. KESNER, Strong normalization of explicit substitutions via cut elimination m

proof nets (extended abstract), in Proceedings, 12th Annual IEEE SymI)osium on Logic in Computer

Science, Warsaw, Poland, 29 June 2 July 1997, IEEE Comt)uter Society Press, Pt). 35 46.

[7] P.-L. CURIEN, T. HARI)IN, AND ,].-J. LI_VY, Confluence properties of weak and st_vng calculi of explicit

substitutions, Journal of the ACM, 43 (1996), pp. 362 397.

[8] G. DOWEK. T. HARI)IN, AND C. KIRCHNER, Higher-order unification via explicit substitutions (ex-

tended abstract), in Proceedings of the Tenth Annual IEEE Symposium on Logic in ComI)utcr

Science, San Diego, California, 26 29 June 1995, IEEE Computer Society Press, Pl)- 366 374.

[9] G. DOWEK. T. HARDIN, C. KIR(:HNER, AN[) F. PFENNING, Unification via explicit substitutions: The

case of higher-order patterns, in Proceedings of the Joint International Conferenc(_ an(t Symt)osium

on Logic Programming, M. Maher, ed., Bonn, Germany, Set)t. 1996, MIT Press.

[10] M. C. F. FERREIRA, D. KESNER, AND L. PUEL, Lambda-calculi with explicit substitutions and com-

position which preserve beta-st_vng normalization, in Algebraic and Logic Programming, Fifth In-

ternational Conference, ALP'96, M. Hanus and M. Rodriguez-Artalejo, eds., Vol. 1139 of LNCS,

Aachen, Germany, 25 27 Sept. 1996, Springer, pp. 284 298.

[ll] H. GEt:VERS, The Church-Rosser property for/?q-reduction in typed it-calculi, in Proceedings of the

Seventh Ammal IEEE SymposiuIn on Logic in Computer Science, Santa Cruz, California, 22 25

June 1992, IEEE Comlmter Society Press, Pl). 453 460.

[12] --, A short and flexible proof of strong norwtalization for the calculus of constructions, in Selected

Papers 2n(t Intl. Workshop on Types for Proofs and Programs, TYPES'94, Bastad, 6 10 June

1994, P. Dybjer, B. Nordstr6m, and J. Smith, eds., Vol. 996 of Lecture Notes in Com])uter Science,

St)ringer-X%rlag, Berlin, 1995, pp. 14 38.

[13] H. GEI!VEP, S AND R. BLOO, Counter-example for subject reduction in calculi of explicit substitutions

with dependent types, personal comnluification, 1997.

[14] H. GEUVERS AND B. WEANER, On the Church-Rosser property for expressive type systems arid its

consequences for" their metatheoretic study, in Proceedings of the Ninth Annual IEEE SymposiuIn

on Logic in Computer Science, Paris, 4-7 July 1994, IEEE Computer Society Press, PI). 320 329.

[15] J.-Y. GIRARD, Interprdtation Fonctionellc et 1Elimination des Compures de l'Arithm6tic d'Ordre

SupdT_ieur, tld'se de doctorat, Universit6 Paris VII, 1972.

[16] .I.-Y. GIRARD. P. TAYLOR, AND Y. LAEONT, Proof arid Types. Cambridge University Press, 1989.

[17] .1. GOUBAU[,T-LAP, RECQ, A proof of weak termination of typed lambda-ealculi, Leetur(' Notes in Corn-

2:1

puter Science, 1512 (1998), pp. 134 153.

[18] R. HARPER, F. HONSELL, AND G. PLOTKIN, A framework for defining logics , Journal of tile Association

for Computing Machinery, 40 (1993), pp. 143 184.

[19] G. HI_ET, Confluent reductions: Abstract properties and applications to term rewritin9 systems,

J.A.C.M., 27 (1980).

[20] F. KAMAREDDINE AND A. Rios, A lambda-ealculus it la De Bruijn with explicit substitutions, LNCS,

982 (1995), pp. 45 62.

[21] --, The Af-calculus: Its typed and its extended versions, personal communication, ,June 1995.

[22] D. KAPUR, P. NAI_ENDHAN, ANI) F. OTTO, On gfvund-confluence of terTu rewritin9 systems, Infor-

mation and Computation, 86 (1990), pp. 14 31.

[23] D. KAPUR AND H. ZHANG, RRL: A rewrite rule laboratory-user'.s manual, Teeh. Report 894)3, De-

partment of Computer Science, University of Iowa. 1989.

[24] D. KF_'SNI_;R, Confluence properties of extensional and non-extensional A-calculi with, explicit substi-

tutions (extended abstract), in Proceedings of the Seventh International Conference on Rewriting

Techniques and Applications (RTA-96), H. Ganzinger, ed., Vol. 1103 of LNCS, New Brunswick,

New Jersey, 1996, Springer-Verlag, pp. 184 499.

[25] C. KIRCHNER AND C. RIN(:ElSSEN, Higher order equational unification via explicit substitutions, in Pro-

ceedings of the International Conference PLILP/ALP/HOA'97, Vol. 1298 of LNCS, Southan,ptotl,

Sept. 1997, Springer.

[26] .J.-V_ _. KLOP, Combinatory reduction systems, Mathematical Center Tracts, (198[)).

[27] P. LESCANNE, From An to A'_, a jouT_tey through calculi of explicit substitutions, in Proceedings of the

21st Annual ACM SIGPLAN-SIGACT Sylnposium on Principles of Prograinming Languages, Jan.

1994, pp. 60 69.

[28] P. LESCANNE AND ,]. I_.OIJYEI/-DE(;LI, Explicit substitutions with de Bruon'.s levels, ill Procee(lillgS of

the International Conference on Rewriting Techniques an(l Apt)lieations (RTA-95), .1. Hsiang, ed.,

Vol. 914 of LNCS, Chapel Hill, North Carolina, 1995, Springer-Verlag, t)P- 294 308.

[29] L. MA(JNtrSSON, The hnplementation of ALF A Proof Editor Based oft Martin-Li;f'.s Monomof

phic Type Theory with, Explicit Substitution, Ph.D. thesis. Chahners University of Technology and

GSteborg University, Jail 1995.

[30] P. A. MELLIES, Typed lantbda-calculi with explicit substitution.s may not terminate, LNCS, 902 (1995),

pp. 328 338.

[31] C. MuNoz, Confluence and preser_mtion of strong normalisation in an explicit substitution.s calculus

(extended abstract), in Proceedings of the Eleventh Annual IEEE Symposium on Logic in Coxnputer

Science, New Brunswick, New Jersey, July 1996, IEEE Computer Society Press, pp. 440 447.

[32] --, Proof representation in type theory: State of the art, in Pro('eedings of the XXII Latinameriean

Conference of Informaties CLEI Panel 96, Santaf(, de Bogot_i, June 1996.

[33] --, A left-linear vaT'iant of Act, in Proc. International Conference PLILP/ALP/HOA'97, Vol. 1298 of

LNCS, Southampton, Sept. 1997, Springer, t)P. 224 234.

[34] --, Un calcul de substitutions pour la reprdsentation de preuves partielles en thdorie de types, thbse de

doctorat. Universit0 Paris VII, 1997. English version availal)le as INRIA research report RR-3309.

[35] G. NADATHUR, The (SCons) rule, personal communication. 1996.

[36] R. P. NI-;DEI{PELT, Stron9 normalization in a typed lambda calculus with. lambda structured types, Ph.D.

thesis, Technical University Eindhoven, Eindhoven, 1973.

25

[37] B.
[38] A.

[39] E.

[4o] .xI.

[41] P.

[42] W.

[43] A.

[44] B.
[45] H.

[46] H.

[47]--

PAGANO, Confluent extensions o/)_, personal communication, 1996.

Ri()s. Contributions h l'dtude de A-calculs avec des substitutions explicites, thbse de doctorat, Uni-

vcrsit6 Paris VII, 1993.

R ITTER, Categorical abstract machines for higher-order lambda calculi, Theoretical C()mputer Sci-

ence, 136 (1994), pp. 125-162.

SCHMII)T-SCllAUSS. Computational aspects of an order-sorted logic with term dcclaTntions, Vol. 395

()f LNCS and LNAI, Springer-Verlag, New York, 1989.

SEVErn, Normalisation in LAMBDA CALCULUS and its relation to type inference, Ph.D. thesis,

Eindhoven University of Technology, 1996.

\V. TAIT, Intentional interpretation of functionals of finite type i, Journal of Symbolic Logic, 32

(1967).

TASlSTRO, Formulation of Martin-LSf's theory of types with explicit substitutions, tech. report,

Chahners University of Technology, University of G6teborg, G6teborg, May 1993.

"_VERNER, Une Thdoric des Constructions Inductives, th_se de doctorat, Universit(_ Paris VII, 1994.

YOKOI,CHI AND T. HIKITA. A rvwriting system for categorical combinators with multiple arguments,

SIAM .Journal on Computing, 19 (1990), pp. 78 97.

Z h NTE MA, Termination of tern, rewriting by semantic labelling, Fundamenta Informaticae, 24 (1995),

t)P. 89 105.

•Tcrmination of 0 and Ho by s(_mantic labeling, personal eommunicatioll, 1996.

26

REPORT DOCUMENTATION PAGE FormApproved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this

collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE

Novenfl_er 1999

4. TITLE AND SUBTITLE

Del)endent types and exl)licit substitutions

6. AUTHOR(S)

('6sat Mfmoz

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

hlstitllte for Colllputer Al)ptications ill Sciellce 311d Eilgilwering

Mail Stop 132('!, NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and St)a('e Administration

Langley Research Center

Hampton. VA 23681-2199

3. REPORT TYPE AND DATES COVERED

Contractor I:[el)ort

5. FUNDING NUMBERS

C NAS1-97046
\VU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 99-43

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CI/-1999-209722

ICASE Report No. 99-43

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report

Sul)mitted to Mathematical Stuctures in Computer Science.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301) 621-(1390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

_,Ve l>resent a dependent-type system for a A-calculus with explicit sut)stitutions. In this system, meta-varial_les, a.s

well as substitutions, art' first-class ot)jects. We show that the system enjoys properties like type tmiqtleness, sul)je('t
reduction, St)lllldllPSS, confllten('e and weak normalization.

14. SUBJECT TERMS

ext)[icit substitutions, dependent types, lambda-caleuhls

I?. SECURITY CLASSIFICATION

OF REPORT

Unclassified

dSN 7540-01-280-5500

18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF THIS PAGE OF ABSTRACT
Unclassified

15. NUMBER OF PAGES

31

16. PRICE CODE

A03
20. LIMITATION

OF ABSTRACT

i

Standard Form 298(Rev. 24g)
Prescribed by ANSi Std, Z39-18

298-102

